

Efficient Synthesis of syn-Aziridino Alcohols by Chelation-Controlled Addition of Dialkylzincs and Grignard Reagents to N-Benzylaziridino Aldehydes

José M. Andrés, Noemí de Elena, Rafael Pedrosa,* and Alfonso Pérez-Encabo

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid Doctor Mergelina s/n, 47011-Valladolid, Spain

Received 2 August 1999; revised 10 September 1999; accepted 30 September 1999

Abstract: N-Benzyl aziridino aldehydes, derived from (L)-serine and (L)-threonine react with dialkylzinc and alkylmagnesium halides leading to syn-aziridino alcohols as single or major stereoisomers. The diastereoselec tivity is affected by the nature of the organometallic and the solvent system. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Diastereoselective synthesis, aziridines, aminoalcohols, alkylzincs, aminoaldehydes

The diastereoselective addition of organometallics to α -amino alchydes has been well studied and frequently applied to the synthesis of biologically important β -amino alcohols. Additions of alkylmetals to aziridino alchydes to obtain aziridino alcohols have been less investigated, and have revealed moderate to good diastereoselectivities with syn adducts always predominating. These aziridino alcohols have been recently tested as promoters for the enantioselective additions of dialkylzincs to N-(diphenylphosphinoyl)imines and aldehydes, and as starting materials for the synthesis of enantiopure α -aminoacids.

On the contrary, the addition of alkyl metals to α,β -epoxy aldehydes have been applied many times to the synthesis of products having three consecutive stereogenic centers as intermediates for natural products.⁶ The reactions occur with moderate to good stereoselection leading to *anti*⁷ or *syn* ⁶ adducts as major diastereoisomers depending on the alkyl metals used.

Organozinc reagents have been scarcely used in diastereoselective additions to chiral amino aldehydes. Recently, we have reported the synthesis of enantiopure syn- β -amino alcohols by chelation-controlled additions of diethylzinc to α -(dibenzylamino)aldehydes.⁸ On the basis of this work we decided to explore the diastereoselective alkylation of (S)-aziridine-2-carboxaldehyde 1a and (2S, 3S)-3-methyl-2-formylaziridine 1b, synthetic equivalents of (L)-serinal and (L)-threoninal respectively.

Starting aziridinoaldehydes 1a-b were prepared by Swern oxidation⁹ of the corresponding aziridino alcohols obtained in two steps from (L)-methyl serinate and (L)-methyl threoninate respectively.^{3b}

The reaction of 1a-b with dialkylzincs or alkylmagnesiun halides yielded a mixture of syn- and anti-aziridino alcohols in moderate chemical yields and good to excellent diastereomeric excesses (Scheme 1), and the reaction conditions were initially tested on the additions to 1a (entries 1-5 in Table 1). The reaction of

aziridino aldehyde 1a with two equivalents of Et₂Zn or EtMgBr (1.2 equiv.) afforded a mixture of ethylated derivatives where the syn-diastereoisomer always predominates.

The syn-selectivity depends on the reaction conditions as can be seen in Table 1. A mixture of toluene-hexane is the preferred solvent for the reaction with Et₂Zn, whereas diethyl ether is the solvent of choice for the reaction with EtMgBr. The use of THF in the last reaction decreased the d.e. to 30% (entry 4), and the presence of an additive with strong coordination character such as TMEDA lead to a near equimolar mixture of syn- and anti-2a (entry 5). The temperature does not apreciably modify the stereochemical results. Indeed, Et₂Zn provides a much better diastereoselection than does EtMgBr, but similar results were obtained in the reactions of 1a with Me₂Zn or MeMgI (compare entries 6 and 7).

It is interesting to note that, contrary to previously described for N-disubstituted α -amino aldehydes, 8,10 both dialkylzincs and alkylmagnesium halides lead to the same *syn*-diastereomer as major product, and these results are coincident with those obtained by addition of lithium derivatives. 11

Table 1. Addition of R₂Zn and RMgX to aziridino aldehydes 1a-b.^a

Entry	Aldehyde	Organometallic	Solvent	Time (h)	Yield(%)b	Product (syn/anti)c
1	1a	Et ₂ Zn	Tol/Hex.	4	55	2a (91/9)
2 ^d	1a	Et ₂ Zn	Tol/Hex.	5	50	2a (90/10)
3	1a	EtMgBr	Et ₂ O	1	48	2a (75/25)
4	la	EtMgBr	THF	2	46	2a (65/35)
5	la	EtMgBr	THF/TMEDA	4	40	2a (58/42)
6	1a	Me ₂ Zn	Tol/Hex.	4	53	3a (76/24)
7	1a	MeMgI	Et ₂ O	3	44	3a (77/23)
8	1 b	Et ₂ Zn	Tol/Hex.	1	71	2b (100) ^e
9	1 b	EtMgBr	Et ₂ O	4	56	2b (72/28)
10	1 b	Me ₂ Zn	Tol/Hex.	3	60	3b (100)e
11	1 b	MeMgI	Et ₂ O	2	63	3b (84/16)

a Unless otherwise noted, reactions were run at 0°C. b Numbers correspond to combined yield of pure and isolated diastereoisomers. c The diastereomeric ratio was determined by integration of the ¹H-NMR spectra of the reaction mixture.d Reaction was run at -78°C to 0°C. e Only the syn-diastereomer was detected by ¹H-NMR.

This stereochemical behaviour can be interpreted from the chelation-controlled addition of organometallic compounds to the aziridino aldehydes (Figure 1).

The threonine-derived formyl aziridine 1b with a methyl group at C-3 cis to the formyl substituent in the heterocycle, reacts with diethyl- or dimethylzinc leading stereospecifically to 2b or 3b (entries 8 and 10), and with ethylmagnesium bromide and methylmagnesium iodide giving the syn-diastereomers 2b and 3b as major diastereomers. These results further support the proposal that the addition occurs at the least hindered si-face of the aldehyde in the chelated complex. Otherwise, the better stereodiferentiation observed for the less reactive zinc derivatives can also interpreted from the proposed model because the coordination to the nitrogen atom is necessary for dialkylzincs to react with aldehydes. 12

The diastereoisomeric aziridino alcohols were separated by flash chromatography (silica gel, hexane/EtOAc: 6/1) and the stereochemistry was determined by ¹H-NMR spectroscopy. The resonances for the methine proton at the hydroxyl-bearing carbon in the *syn*-diastereomers appear upfield relative to the same proton in *anti*-diastereomers, whereas the vicinal coupling constant between this methine proton and that attached to the carbon of the aziridine nucleous for *syn*-2a-2b, and *syn*-3a were larger than for *anti*-2a-b, and *anti*-3a but smaller for *syn*-3b than for *anti*-3b, ^{2b,13} (Table 2).

Table 2. Selected ¹H-NMR data for aziridino alcohols syn- and anti.

Entry	Compound	R	J ^{1,2} (NC <u>H</u> -C <u>H</u> OH) (Hz)	δс <u>н</u> он
1	syn-2a	Н	4.9	3.18
2	anti-2a	Н	2.9	3.65
3	syn-3a	Н	4.7	3.41
4	anti-3a	Н	3.5	3.87
5	syn- 2 b	Me	6.3	3.29
6	anti-2b	Me	4.8	3.47
7	syn-3b	Me	6.9	3.52
8	anti-3b	Me	7.1	3.70

To confirm the proposed absolute stereochemistry, the major syn-diastereomers 2a, 2b and 3b were transformed into the known aminoalcohols syn-5, syn-6 and syn-9. To this end, syn-2a was subjected to reductive ring opening 14 by stirring at r.t. with hydrogen and 20% Pd(OH)₂ on carbon to give syn-4 as a single product in 70% yield after isolation and purification. Treatment of syn-4 with benzyl bromide and K_2CO_3 in acetonitrile afforded syn-58 quantitatively.

It is noteworthy than anti-2a behaved in a different way to syn-2a; under similar reactions conditions anti-2a lead to 1:3 mixture (61% combined yield) of debenzylated anti-2a and (2S, 3R)-2-amino-3-pentanol.8 In this case debenzylation occurred easier than the hydrogenolytic ring opening.

In the same way, syn-3b was transformed into a 3:7 mixture of debenzylated syn-3b and the aminoalcohol syn-6 (81% combined yield), which was converted into the trans-oxazolidinone trans-78 by reaction with triphosgene/iPr₂NEt in dichloromethane, 15 and syn-2b was hydrogenolyzed to a 2:1 mixture of debenzylated syn-2b and the aminoalcohol syn-8 (92% combined yield), which was dibenzylated to syn-9 by treatment with excess benzyl bromide in acetonitrile.

In addition, the absolute stereochemistry of (2S, 3S)-3-amino-2-pentanol (syn-6) and (3S, 4S)-4-N,N-dibenzylamino-3-hexanol (syn-9) was confirmed by diastereoselective addition of dimethylzinc and diethylzinc to (S)-2-N,N-dibenzylaminobutanal respectively.⁸

Experimental Section

General. The reactions were carried out in oven-dried glassware, under argon atmosphere, and using anhydrous solvents. Diethylzinc, as 1M solution in hexane and dimethylzinc as 2M solution in toluene, were purchased from Aldrich. The ¹H-NMR (300 MHz) and ¹³C-NMR (75 MHz) spectra were registered on a Bruker AC 300 or Bruker AMX 300, using TMS as internal standard. IR spectra were recorded on a Philips PU 9706 Spectrometer, as film or KBr dispersion. Optical rotations were measured on a Perkin-Elmer 241 Polarimeter in a 1 dm. cell.

Oxidation of N-benzylaziridinoalcohols to N-benzylaziridinoaldehydes 1.9 To a stirred solution of oxalyl chloride (7.45 mmol, 0.65 mL) in dichloromethane (15 mL) at -78 °C under argon was added dimethyl sulfoxide (15.5 mmol, 1.1 mL). After 15 min, a solution of the corresponding N-benzylaziridinoalcohol (6.0 mmol) in dichloromethane (15 mL) was added. The mixture was stirred for 30 min and triethylamine (15.8 mmol, 2.2 mL) was added and the resulting mixture was then partitioned between dichloromethane and saturated

aqueous NaHCO₃. The organic phase was dried (MgSO₄) and concentrated to yield an oil that was used without further purification in the next step.

(2S)-1-Benzyl-2-aziridinecarboxaldehyde (1a). Colorless oil. $[\alpha]^{23}_{D}$ = -41.6 (c= 0.9, CHCl₃). IR (film): 1720, 730, 695 cm⁻¹. ¹H-NMR (CDCl₃): 1.92 (d, 1H, J= 6.6 Hz, CHHN); 2.21 (ddd, 1H, J₁= 6.6 Hz, J₂= 6.3 Hz, J₃= 2.6 Hz, CHCHO); 2.28 (d, 1H, J= 2.6 Hz, CHHN); 3.49 (d, 1H, J= 13.3 Hz, CHHPh); 3.58 (d, 1H, J= 13.3 Hz, CHHPh); 7.25-7.40 (m, 5H, Har); 8.92 (d, 1H, J= 6.3 Hz, CHO). ¹³C-NMR (CDCl₃): 32.6 (CH₂N); 44.5 (CHN); 63.3 (CH₂Ph); 127.5, 127.9, 128.5 (CHar); 137.5 (Car); 199.7 (CHO). Anal. Calcd. for C₁₀H₁₁NO: C, 74.51; H, 6.88; N, 8.69. Found: C, 74.18; H, 6.66; N, 8.47.

(2S, 3S)-1-Benzyl-3-methyl-2-aziridinecarboxaldehyde (1b). Colorless oil. $[\alpha]^{23}_{D}$ = -141.2 (c= 1.1, CHCl₃). IR (film): 1700, 730, 690 cm⁻¹. ¹H-NMR (CDCl₃): 1.37 (d, 3H, J= 5.6 Hz, CH₃); 2.16 (m, 2H, CHCH₃, CHCHO); 3.58 (d, 1H, J= 13.6 Hz, CHHPh); 3.62 (d, 1H, J= 13.6 Hz, CHHPh); 7.25-7.40 (m, 5H, Har); 9.35 (d, 1H, J= 6.1 Hz, CHO). ¹³C-NMR (CDCl₃): 14.3 (CH₃); 43.1 (CHCH₃); 48.7 (CHCHO); 63.0 (CH₂Ph); 127.0, 127.5, 128.1 (CHar); 137.7 (Car); 200.7 (CHO). Anal. Calcd. for C₁₁H₁₃NO: C, 75.40; H, 7.48; N, 7.99. Found: C, 75.09; H, 7.40; N, 7.76.

Alkylation of N-Benzylaziridinoaldehydes 1 with R_2Zn . General method. A 50 mL oven-dried flask equipped with a septum, a magnetic stirrer and purged with argon, was charged with the corresponding N-Benzylaziridinoaldehyde (2 mmol) and anhydrous toluene (10 mL). The solution was cooled to 0 $^{\circ}$ C (ice bath), and a 1M solution of diethyl zinc in hexane (4 mmol, 4 mL, 2 equiv.) or a 2M solution of dimethyl zinc in toluene (4 mmol, 2 mL, 2 equiv.) were injected through the septum. The mixture was stirred at that temperature until the reaction was finished (TLC), and then quenched with aqueous saturated solution of ammonium chloride (40 mL). The organic layer was separated and the aqueous phase was extracted with diethyl ether (3x 20 mL). The combined organic layers were washed with brine, and dried over anhydrous Na₂SO₄. The solvents were removed on Rotavapor and the residue was purified by flash chromatography (silica gel, hexane/ethyl acetate: 6/1).

Alkylation of N-Benzylaziridinoaldehydes 1 with RMgX. General method. To a solution of RMgBr (2.4 mmol, 1.2 equiv.) in ether (5 mL) at 0°C was added dropwise a solution of aminoaldehyde 1 (2 mmol) in ether (3 mL). The mixture was stirred for 1h and saturated NH₄Cl (10 mL) was added. The mixture was extracted with ether (3 x 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and the solvent was evaporated under vacuum. The residue was purified by flash chromatography (silica gel, hexane/ethyl acetate: 6/1).

(1S, 2'S)-1-(1'-Benzyl-2'-aziridinyl)-1-propanol (syn-2a). Colorless oil. $[\alpha]^{23}_{D}$ = +62.5 (c= 1.1, CHCl₃). IR (film): 3400, 730, 690 cm⁻¹. ¹H-NMR (CDCl₃): 0.92 (t, 3H, J= 7.4 Hz, CH₃); 1.47 (dq, 2H, J₁= 7.4 Hz, J₂= 6.3 Hz, CH₂CH₃); 1.51 (d, 1H, J= 6.5 Hz, CHN); 1.65 (ddd, 1H, J₁= 6.5 Hz, J₂= 4.9 Hz, J₃= 3.6 Hz, CHN); 1.84 (d, 1H, J= 3.6 Hz, CHNN); 2.35 (br s, 1H, OH); 3.18 (dt, J₁= 6.3 Hz, J₂= 4.9 Hz, CHOH); 3.40 (d, 1H, J= 13.0 Hz, CHHPh); 3.50 (d, 1H, J=13.0 Hz, CHHPh); 7.25-7.35 (m, 5H, Har). ¹³C-NMR (CDCl₃): 9.8 (CH₃); 28.2 (CH₂CH₃); 31.8 (CH₂N); 43.6 (CHN); 64.0 (CH₂Ph); 72.9 (CHOH); 127.1, 128.1, 128.3 (CHar); 138.7 (Car). Anal. Calcd. for C₁₂H₁₇NO: C, 75.35; H, 8.96; N, 7.32. Found: C, 74.96; H, 8.78; N, 7.21.

(1R, 2'S)-1-(1'-Benzyl-2'-aziridinyl)-1-propanol (anti-2a). Colorless oil. $[\alpha]_{D}^{23}$ = -13.2 (c= 1.1, CHCl₃). IR (film): 3400, 740, 700 cm⁻¹. ¹H-NMR (CDCl₃): 0.95 (t, 3H, J= 7.4 Hz, CH₃); 1.39 (d, 1H, J= 6.4 Hz, CHHN); 1.46 (m, 2H, CH₂CH₃); 1.70 (ddd, 1H, J₁= 6.4 Hz, J₂= 3.6 Hz, J₃= 2.9 Hz, CHN); 1.92 (d,

- 1H, J= 3.6 Hz, CHHN); 2.60 (br s, 1H, OH); 3.43 (d, 1H, J= 13.4 Hz, CHHPh); 3.58 (d, 1H, J= 13.4 Hz, CHHPh); 3.65 (m, 1H, CHOH); 7.25-7.40 (m, 5H, Har). 13 C-NMR (CDCl₃): 9.6 (CH₃); 27.5 (CH₂CH₃); 29.5 (CH₂N); 42.4 (CHN); 63.6 (CH₂Ph); 69.5 (CHOH); 127.1, 127.8, 128.3 (CHar); 138.8 (Car). Anal. Calcd. for C₁₂H₁₇NO: C, 75.35; H, 8.96; N, 7.32. Found: C, 75.08; H, 9.03; N, 7.04.
- (1S, 2'S)-1-(1'-Benzyl-2'-aziridinyl)-1-ethanol (syn-3a). Colorless solid, m.p. 102-104 $^{\circ}$ C (from hexane). [α]²³_D= +5.7 (c= 1.1, CHCl₃). IR (film): 3380, 740, 700 cm⁻¹. ¹H-NMR (CDCl₃): 1.14 (d, 3H, J= 6.5 Hz, CH₃); 1.48 (d, 1H, J= 6.5 Hz, CHHN); 1.63 (ddd, 1H, J₁= 6.5 Hz, J₂= 4.7 Hz, J₃= 3.5 Hz, CHN); 1.81 (d, 1H, J= 3.5 Hz, CHHN); 2.72 (br s, 1H, OH); 3.40 (d, 1H, J= 13.0 Hz, CHHPh); 3.41 (dq, 1H, J₁= 6.5 Hz, J₂= 4.7 Hz, CHOH); 3.48 (d, 1H, J= 13.0 Hz, CHHPh); 7.25-7.35 (m, 5H, Har). ¹³C-NMR (CDCl₃): 20.5 (CH₃); 31.5 (CH₂N); 45.4 (CHN); 64.0 (CH₂Ph); 68.0 (CHOH); 127.1, 128.1, 128.3 (CHar); 138.6 (Car). Calcd. for C₁₁H₁₅NO: C, 74.54; H, 8.53; N, 7.90. Found: C, 74.24; H, 8.60; N, 7.60.
- (1R, 2'S)-1-(1'-Benzyl-2'-aziridinyl)-1-ethanol (anti-3a). Colorless oil. $[\alpha]^{23}_{D}=$ -19.8 (c= 0.5, CHCl₃). IR (film): 3360, 740, 695 cm⁻¹. ¹H-NMR (CDCl₃): 1.13 (d, 3H, J= 6.2 Hz, CH₃); 1.40 (d, 1H, J= 6.4 Hz, CHHN); 1.68 (ddd, 1H, J₁= 6.4 Hz, J₂= 3.6 Hz, J₃= 3.5 Hz, CHN); 1.91 (d, 1H, J= 3.6 Hz, CHHN); 2.77 (br s, 1H, OH); 3.42 (d, 1H, J= 13.3 Hz, CHHPh); 3.61 (d, 1H, J= 13.3 Hz, CHHPh); 3.87 (dq, 1H, J₁= 6.2 Hz, J₂= 3.5 Hz, CHOH); 7.25-7.40 (m, 5H, Har). ¹³C-NMR (CDCl₃): 19.9 (CH₃); 29.45 (CH₂N); 43.6 (CHN); 63.6 (CH₂Ph); 64.5 (CHOH); 127.1, 127.9, 128.3 (CHar); 138.8 (Car). Calcd. for C₁₁H₁₅NO: C, 74.54; H, 8.53; N, 7.90. Found: C, 74.32; H, 8.38; N, 7.68.
- (1S, 2'S, 3'S)-1-(1'-Benzyl-3'-methyl-2'-aziridinyl)-1-propanol (syn-2b). Colorless oil. [α]²³_D= +23.0 (c=0.9, CHCl₃). IR (film): 3300, 730, 690 cm⁻¹. ¹H-NMR (CDCl₃): 0.94 (t, 3H, J= 7.5 Hz, CH₃CH₂); 1.20 (d, 3H, J= 5.9 Hz, CH₃CH); 1.52 (m, 2H, CH₂CH₃); 1.55 (dd, 1H, J₁= 6.8 Hz, J₂= 6.3 Hz, CHCHOH); 1.77 (dq, 1H, J₁= 6.8 Hz, J₂= 5.9 Hz, CHCH₃); 2.49 (br s, 1H, OH); 3.29 (dt, 1H, J₁= 6.8 Hz, J₂= 6.3 Hz, CHCHOH); 3.47 (d, 1H, J= 13.2 Hz, CHHPh); 3.54 (d, 1H, J= 13.2 Hz, CHHPh); 7.25-7.40 (m, 5H, Har). ¹³C-NMR (CDCl₃): 9.6 (CH₃CH₂); 13.6 (CH₃CH); 28.3 (CH₂CH₃); 39.6 (CHCH₃); 48.7 (CHCHOH); 64.2 (CH₂Ph); 69.7 (CHOH); 126.9, 127.9, 128.3 (CHar); 138.9 (Car). Calcd. for C₁₃H₁₉NO: C, 76.06; H, 9.33; N, 6.82. Found: C, 75.82; H, 9.18; N, 6.59.
- (1R, 2'S, 3'S)-1-(1'-Benzyl-3'-methyl-2'-aziridinyl)-1-propanol (anti-2b). Colorless oil. $[\alpha]^{23}_{D^{=}}$ -4.7 (c= 0.8, CHCl₃). IR (film): 3380, 740, 700 cm⁻¹. ¹H-NMR (CDCl₃): 0.93 (t, 3H, J= 7.4 Hz, CH₃CH₂); 1.28 (d, 3H, J= 5.8 Hz, CH₃CH); 1.47 (m, 2H, CH₂CH₃); 1.56 (m, 1H, CHCHOH); 1.71 (dq, 1H, J₁= 6.4 Hz, J₂= 5.8 Hz, CHCH₃); 2.27 (br s, 1H, OH); 3.47 (dt, 1H, J₁= 7.4 Hz, J₂= 4.8 Hz, CHOH); 3.51 (s, 2H, CH₂Ph); 7.25-7.40 (m, 5H, Har). ¹³C-NMR (CDCl₃): 9.7 (CH₃CH₂); 13.7 (CH₃CH); 28.3 (CH₂CH₃); 39.2 (CHCH₃); 46.9 (CHCHOH); 64.3 (CH₂Ph); 70.7 (CHOH); 127.0, 128.0, 128.3 (CHar); 138.9 (Car). Calcd. for C₁₃H₁₉NO: C, 76.06; H, 9.33; N, 6.82. Found: C, 75.73; H, 9.22; N, 6.76.
- (1S, 2'S, 3'S)-1-(1'-Benzyl-3'-methyl-2'-aziridinyl)-1-ethanol (syn-3b). Colorless oil. $[\alpha]^{23}_{D}$ = +13.5 (c= 1, CHCl₃). IR (film): 3300, 730, 690 cm⁻¹. ¹H-NMR (CDCl₃): 1.18 (d, 3H, J= 6.4 Hz, CH₃CHOH); 1.20 (d, 3H, J= 5.8 Hz, CH₃CHN); 1.55 (dd, 1H, J= 6.9 Hz, J= 6.8 Hz, CHCHOH); 1.74 (dq, 1H, J= 6.8 Hz, J= 5.8 Hz, CH₃CHN); 2.80 (br s, 1H, OH); 3.46 (d, 1H, J= 13.3 Hz, CHHPh); 3.52 (dq, 1H, J= 6.9 Hz, J= 6.4 Hz, CHOH); 3.54 (d, 1H, J= 13.3 Hz, CHHPh); 7.25-7.40 (m, 5H, Har). ¹³C-NMR (CDCl₃): 13.5 (CH₃CHN); 20.9 (CH₃CHOH); 39.6 (CHNCH₃); 49.8 (CHCHOH); 64.4 (CH₂Ph); 65.5 (CHOH); 127.1, 128.0, 128.5 (CHar); 139.1 (Car). Anal. Calcd. for Cl₂H₁₇NO: C, 75.35; H, 8.96; N, 7.32. Found: C, 75.03; H, 9.00; N, 7.04.

- (1R, 2'S, 3'S)-1-(1'-Benzyl-3'-methyl-2'-aziridinyl)-1-ethanol (anti-3b). Colorless oil. $[\alpha]^{23}_{D}$ = +4.2 (c= 0.24, CHCl₃). IR (film): 3350, 730, 690 cm⁻¹. ¹H-NMR (CDCl₃): 1.14 (d, 3H, J= 6.2 Hz, CH₃CHOH); 1.29 (d, 3H, J= 5.8 Hz, CH₃CHN), 1.52 (dd, 1H, J=7.1 Hz, J= 6.4 Hz, CHCHOH); 1.72 (dq, 1H, J=6.4 Hz, J=5.8 Hz, CH₃CHN); 2.31 (br s, 1H, OH); 3.42 (d, 1H, J= 13.2 Hz, CHHPh); 3.60 (d, 1H, J= 13.2 Hz, CHHPh); 3.70 (dq, 1H, J= 7.1 Hz, J= 6.2 Hz, CHOH); 7.20-7.40 (m, 5H, Har). ¹³C-NMR (CDCl₃): 13.6 (CH₃CHN); 21.1 (CH₃CHOH); 39.6 (CH₃CHN); 48.2 (CHCHOH); 64.3 (CH₂Ph); 65.6 (CHOH); 127.0, 128.1, 128.3 (CHar); 138.9 (Car). Anal. Calcd. for C₁₂H₁₇NO: C, 75.35; H, 8.96; N, 7.32. Found: C, 75.11; H, 8.74; N, 7.20.
- (2S, 3S)-2-Benzylamino-3-pentanol (syn-4). Colorless oil. $[\alpha]^{23}_{D}$ = +36.8 (c= 0.7, CHCl₃). ¹H-NMR (CDCl₃): 1.00 (t, 3H, J= 7.4 Hz, CH₃CH₂); 1.12 (d, 3H, J= 6.4 Hz, CH₃CH); 1.38 (m, 1H, CHHCH₃); 1.64 (m, 1H, CHHCH₃); 2.52 (dq, 1H, J₁= 8.1 Hz, J₂= 6.4 Hz, CHN); 2.75 (br s, 1H, OH); 3.16 (dt, 1H, J₁= 8.1 Hz, J₂= 3.2 Hz, CHOH); 3.71 (d, 1H, J= 12.9 Hz, CHHPh); 3.94 (d, 1H, J= 12.9 Hz, CHHPh); 7.25-7.35 (m, 5H, Har). ¹³C-NMR (CDCl₃): 9.9 (CH₃CH₂); 16.4 (CH₃CH); 26.4 (CH₂CH₃); 51.1 (CH₂Ph); 57.2 (CHN); 75.7 (CHOH); 127.1, 128.1, 128.4 (CHar); 139.9 (Car).
- (2S, 3S)-3-Amino-2-pentanol (syn-6). Colorless solid, m.p. 48-50 °C (from hexane). $[\alpha]^{23}_{D}$ = -5.4 (c= 0.9, MeOH). IR (film): 3340, 1455, 1375, 1110, 960 cm⁻¹. ¹H-NMR (CDCl₃): 0.96 (t, 3H, J= 7.4 Hz, CH₃CH₂); 1.17 (d, 3H, J= 6.2 Hz, CH₃CH); 1.24 (m, 1H, CHHCH₃); 1.60 (m, 1H, CHHCH₃); 2.40 (m, 1H, CHN); 2.52 (br s, 3H, OH and NH₂); 3.45 (dt, 1H, J₁= 6.7 Hz, J₂= 6.2 Hz CHOH). ¹³C-NMR (CDCl₃): 10.4 (CH₃CH₂); 20.0 (CH₃CH); 26.7 (CH₂); 58.9 (CHN); 69.8 (CHOH).
- (4S, 5S)-4-Ethyl-5-methyloxazolidin-2-one (trans-7). Colorless oil. [α] $^{23}_{D}$ = -39.7 (c= 0.9, CHCl₃). IR (film): 3260, 1735 cm⁻¹. 1 H-NMR (CDCl₃): 0.96 (t, 3H, J= 7.4 Hz, CH₃CH₂); 1.42 (d, 3H, J= 6.3 Hz, CH₃CH); 1.59 (m, 2H, CH₂); 3.34 (m, 1H, CHN); 4.30 (dq, 1H, J= 6.3 Hz, J= 5.9 Hz, CHO); 6.88 (br s, 1H, NH). 13 C-NMR (CDCl₃): 9.5 (CH₃CH₂); 20.3 (CH₃CH); 27.7 (CH₂); 61.0 (CHN); 78.6 (CHO); 159.7 (CO).
- (3S, 4S)-4-N,N-Dibenzylamino-3-hexanol (syn-9). Colorless oil. $[\alpha]^{23}_{D}$ = +17.5 (c= 1.2, CHCl₃). IR (film): 3380, 1600, 1450, 740, 690 cm⁻¹. ¹H-NMR (CDCl₃): 0.91 (t, 3H, J= 7.2 Hz, CH₃); 1.08 (t, 3H, J= 7.2 Hz, CH₃); 1.15 (m, 1H, CHHCH₃); 1.35 (m, 1H, CHHCH₃); 1.57 (m, 1H, CHHCH₃); 1.77 (m, 1H, CHHCH₃); 2.37 (m, 1H, CHN); 3.40 (m, 1H, CHOH); 3.45 (d, 2H, J= 13.2 Hz, CHHPh); 3.87 (d, 2H, J= 13.2 Hz, CHHPh); 4.40 (br s, 1H, OH); 7.20-7.35 (m, 10H, Harom). ¹³C-NMR (CDCl₃): 10.1 (CH₃); 14.0 (CH₃); 19.0 (CH₂); 26.8 (CH₂); 54.0 (CH₂Ph); 64.1 (CHN); 71.6 (CHOH); 127.1, 128.4, 129.1 (CH_{arom}); 139.0 (Carom).

Acknowledgements: We thanks the Spanish DGICYT the financial support of this work (Project PB95-707) and Junta de Castilla y León (Project VA67/99). One of us (N.E.) thanks the Spanish MEC for a predoctoral fellowship (FPU).

References and notes:

(a) Jurczac, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149-164. (b) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1991, 30, 1531-1546. (c) Reetz, M. T. Chem. Rev. 1999, 99, 1121-1162.

- (a) Wartski, L.; Sierra-Escudero, A. Bull. Soc. Chim. Fr. 1973, 7-8, 2466-2468.
 (b) Hwang, G.; Chung, J.-H.; Lee, W. K. J. Org. Chem. 1996, 61, 6183-6188.
 (c) Hwang, G.; Chung, J.-M.; Lee, W. K. Tetrahedron 1996, 52, 12111-12116.
- (a) Andersson, P. G.; Guijarro, D.; Tanner, D. Synlett 1996, 727-728.
 (b) Andersson, P. G.; Guijarro, D.; Tanner, D. J. Org. Chem., 1997, 62, 7364-7375.
- 4. Tanner, D.; Kornf, H. T.; Guijarro, D.; Andersson, P. G.; Tetrahedron 1998, 54, 14213-1432.
- 5. Travins, J. M.; Etzkorn, F. A. Tetrahedron Lett. 1998, 39, 9389-9392.
- 6. Urabe, H.; Evin, O. O.; Sato, F. J. Org. Chem. 1995, 60, 2660-2661 and references cited therein.
- 7. (a) Urabe, H.; Sato, F. J. Synth. Org. Chem. Jpn. 1993, 51, 14-24. (b) Kim, B. C.; Lee, W. K. Tetrahedron 1996, 52, 12117-12124.
- 8. Andrés, J. M.; Barrio, R.; Martínez, M. A.; Pedrosa, R.; Pérez-Encabo, A. J. Org. Chem. 1996, 61, 4210-4213.
- 9. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. J. Org. Chem. 1978, 43, 2480-2482.
- 10. (a) Andrés, J. M.; Pedrosa, R. Tetrahedron 1998, 54, 5607-5616. (b) Andrés, J. M.; Pedrosa, R. Tetrahedron: Asymmetry 1998, 9, 2493-2498.
- 11. (a) Chang, J. W.; Bae, J. H.; Shin, S. H.; Park, C. S.; Choi, D.; Lee, W. K. Tetrahedron Lett., 1998, 39, 9193-9196. (b) Choi, S. K.; Lee, J. S.; Kim, J. H.; Lee, W. K. J. Org. Chem. 1997, 62, 743-745.
- 12. Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 49-69.
- 13. (a) Goument, B.; Duhamel, L.; Maugé, R. Bull. Soc. Chim. Fr. 1993, 130, 459-466. (b) van der Zeijden, A. A. H. Tetrahedron: Asymmetry 1995, 6, 913-918.
- 14. Lim, Y.; Lee, W. K. Tetrahedron Lett. 1995, 36, 8431-8434.
- 15. Barret, A. G. M.; Seefeld, M. A.; White, A. J. P.; Williams, D. J. J. Org. Chem. 1996, 61, 2677-2685.